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Abstract

Different approaches are known for the introduction of the classical Chebyshev polynomials.
Although mostly they are introduced in connection with trigonometric identities or defined as
orthogonal polynomials or a solution of a particular differential equation, we take extremality as
a defining property. We discuss the current computer tools which make the exploration of extremal
polynomials possibly more easy and enjoyable. Finally we investigate ways to generalize the
notion of classical Chebyshev polynomials as extremal polynomials which are less known. The
author used the general computer algebra system Mathematica for the development, but other
systems can be also suitbale for the exploration: a part of a GeoGebra book as an illustrative
example is also included.

1 Introduction
The expressions manipulated by the general purpose computer algebra systems (CAS) typically in-
clude polynomials in several variables. Powerful algorithms in symbolic computation such as Groeb-
ner basis, cylindrical algebraic decomposition, real and complex quantifier elimination make it pos-
sible to investigate nontrivial computational problems that can be expressed by polynomials. Some
typical problem class is polynomial optimization, polynomial approximation, robot motion planing,
see [4, p. 2]. Therefore it is reasonable to expect that CAS also provides a handy environment for ex-
ploring classical Chebyshev polynomials of the first kind. They may pop up in different contexts and
courses at university level, but some relations and properties can be treated already in the secondary
level. In this short paper, without attempting to be comprehensive in this huge field, we highlight
an approach which emphasizes a defining extremal property of these objects. We investigate and
demonstrate the level of the algorithmic, computational support that a user/learner may get through
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the different exploration paths. This is critical due to the fact that computational complexity can
grow rapidly with the growth of the degree of the polynomials investigated. Finally we discuss how
the problems and the notions can be generalized. Before we turn into extremal polynomials, as a
contrast, we briefly recall two other viable alternative approaches for the introduction of Chebyshev
polynomials. The first one is suitable even in the secondary level with basic trigonometric background
knowledge. The second approach, which typically occurs in undergraduate courses in numerics, treats
them as members of an orthogonal polynomial system.

1.1 Approach 1: A trigonometric identity
Problem 1 Find an explicit expression for cosnx in terms of cosx, that is, find Tn such that cosnx =
Tn(cosx).

The problem is trivial for n = 0, 1 (i.e., T0(x) = 1, T1(x) = x) and also easy for n = 2 knowing
a standard trigonometric identity for the double angle:

T2(cosx) = cos(2x) = 2(cos x)2 − 1 ⇒ T2(x) = 2x2 − 1. (1)

Here the computer algebra system such as Mathematica1 [15] can help verify or generate the sequence
of the polynomials as follows:

Table[

Expand[TrigExpand[Cos[nx]]/.Sin[x] → Sqrt[1−Cos[x]2]/.Cos[x] → x],

{n,5}], (2)

to get the finite list of polynomials:

{1,−1 + 2x2,−3x+ 4x3, 1− 8x2 + 8x4, 5x− 20x3 + 16x5}. (3)

The polynomials in the list above, i.e., Tn(x) (n = 0, 1, . . . ) is called the n-th Chebyshev polynomial
(of the first kind) and will be the main player in this article. Root distribution, minimum and maximum
points, etc. can be investigated now. For example, on the unit interval I = [−1, 1],

min
x∈I

Tn(x) = −1, max
x∈I

Tn(x) = 1 (n > 0), (4)

and all the roots are simple and in I. Here we can also exploit the graphical tools of a CAS at our
disposal to depict the graphs of the functions obtained.

Figure 1: Graphs of the Chebyshev polynomials Tn in I
1Sample Mathematica codes are boldfaced in the text
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Finally, our students can be asked for a recursive relation which can be deduced by another trigono-
metric identity

T0(x) = 1, T1(x) = x;Tn(x) = 2xTn−1(x)− Tn−2(x) (n > 1). (5)

1.2 Approach 2: Orthogonal polynomial system
Problem 2 Find a set of orthogonal polynomials {On} in the unit interval [−1, 1] w.r.t. the weight
function ρ(x) = 1√

1−x2 .

Assume that O0 = 1, O1(x) = x is already known and we are looking for the monic quadratic
a0 + a1x+ x2 which is orthogonal to O0 and O1. In this context two functions f and g is orthogonal
iff

〈f, g〉 :=
∫ 1

−1

f(x)g(x)√
1− x2

= 0. (6)

The two inner products 〈O0, O2〉 and 〈O1, O2〉 are computed with Mathematica as follows.

Integrate[(x2 + a1x+ a0)/Sqrt[1− x2], {x,−1,1}], (7)

Integrate[x(x2 + a1x+ a0)/Sqrt[1− x2], {x,−1,1}]. (8)

What we get is (1/2 + a0)π and (π/2)a1. It is obvious the two inner products are zero iff a0 = −1
2

and a1 = 0, thus

O2(x) = x2 − 1

2
. (9)

Figure 2: Visual demonstration of the orthogonality of O1 and O2

Observe that although O2 is not same polynomial as T2, it differs from T2 only by a constant
factor! A Gram-Schmidt type orthogonalization process can generate recursively all the elements of
the polynomial system Oj as follows (although it may take some time to compute On for bigger n’s
using the implementation below):

P[0] = 1;

P[n ] := xn−Sum[Integrate[xnP[j]/Sqrt[1− x2], {x,−1,1}]
/Integrate[P[j]P[j]/Sqrt[1− x2], {x,−1,1}]P[j], {j,0,n− 1}]
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What we get finally for n ≤ 5 is

O1(x) = x,O2(x) = x2−1/2, O3(x) = x3−3/4x,O4 = x4−x2+1/8, O5(x) = x5−5/4x3+5x/16. (10)

We see that the two polynomial systems can be linked via the the factor 2n−1, i.e.,

Tn(x) = 2n−1On(x) n = 1, 2, . . . . (11)

2 Chebyshev polynomials as extremal polynomials
In this section we now turn to our main target, to extremal polynomials. Extremal objects are very
important in mathematics. Extremal algebraic and trigonometric polynomials are basic to approxima-
tion theory and extremal graph theory is an estalished subfield of graph theory. Extremal objects have
usually nice properties and can play also important role in estimations and problem solving strategies.
Similar to Section 1, two types of problems are investigated.

2.1 Approach 3: Extremal polynomials in the unit interval
Problem 3 Find a polynomial among the monic polynomials of degree n with real coefficients which
deviates least from the constant zero polynomial in I = [−1, 1].

Again, we start to investigate the degree two case: First we use the symbolic optimization tools of
Mathematica as a black-box [3]. Roughly, the built-in functions Minimize and Maximize are able to
deal with constraint symbolic (polynomial) optimization problems and return a extremal value and an
extremal point. Note that the square of the deviation is investigated. After the call

Minimize[Maximize[{((x2 + a1x+ a0)− 0)2,−1 ≤ x ≤ 1},x][[1]], {a0, a1}], (12)

we obtain {
1

4
, {a0 → −1

2
, a1 → 0}

}
. (13)

It is easy to interpret the result. The least deviation is
√

1
4
= 1

2
and (because of uniqueness) the

coefficients of the optimal monic quadratic polynomial are a1 = 0 and a0 = −1
2
, so the extremal

polynomial is

p∗2(x) = x2 − 1

2
. (14)

We observe that the extremal polynomial in (14) is exactly the same as O2 given in (9) and conse-
quently differing from T2 again only by a scaling factor! The next picture shows the deviation of p∗2
from the constant zero polynomial in I:
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Figure 3: The graph of |p∗2(x)− 0|

If we analyze the syntax of (12), we observe that the problem is a minimax problem and this makes
the problem difficult from the computational point of view. How does the symbolic optimization
algorithm work? One can translate this minimax problem as a real quantifier elimination (abbreviated
as QE) problem directly as follows (see [6], [13], [14] for the details).
In a nutshell we try give a feel for the algorithmic tool we use in order to deal with extremal polyno-
mials symbolically. We know from calculus that many important properties of a real valued function
such as boundedness, continuity, etc., can be expressed via a quantified first order formula containing
only ’less’ as binary predicate symbol. For instance, the formula

∃K ∀x

∣∣∣∣ x

x2 + 1

∣∣∣∣ ≤ K (15)

evaluates to true or we say that its logical value is true, because the rational function R(x) = x
x2+1

is
bounded on the whole real line. One can prove that in elementary algebra, we can always decide the
validity of a similar simple formula such as (15) containing only polynomial inequalities, effectively
by an algorithm. In addition, if not all variables are bound by quantifiers in the formula, then we
cannot say that the formula is true or false, but we can compute a quantifier free formula containing
only the free variables which is equivalent to the initial formula, [1], [5] . If we consider formula (15)
again, but now without the outermost existential quantifier, the quantifier free equivalent formula is

K ≥ 1/2, (16)

and can be interpreted as an inequality condition on the free variable K which describes the set of
possible bounds for the rational function R over the reals.
Now we turn back to Problem 3 for n = 2 and solve it with QE. Assume that we represent the
monic quadratic extremal polynomial by the coefficient list (a0, a1, 1), i.e., p = a0 + a1x + x2 is a
polynomial which deviates least from zero. We compare it with other monic quadratics, say, with
q = b0 + b1x+ x2. The matrix of the input formula will contain the two monic quadratic polynomials
p and q. The next quantified formula expresses in the formal language that p is a polynomial with
least deviation.

∀
x,b0,b1

−1≤x≤1

∃
y

−1≤y≤1

(
(x2 + a1x+ a0)

2 ≤ (y2 + b1y + b0)
2
)

(17)

We have a first order formula with four bound (b0, b1, x, y) and 2 free (a0, a1) variables. Once we
eliminated the quantified variables by the quantifier elimination algorithm we get a condition on the
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free variables, i.e., we get the coefficients of the extremal polynomial immediately. In Mathematica
the built-in function Resolve does the effective quantifier elimination.

Resolve[ForAll[{x,b0,b1},−1 ≤ x ≤ 1,Exists[y,−1 ≤ y ≤ 1,

(x2 + a1x+ a0)2 ≤ (y2 + b1y + b0)2]], {a0, a1},Reals] (18)

Calling the QE algorithm, we obtain again

a0 == −1

2
∧ a1 == 0, (19)

that is, we again get the polynomial p∗2 in (14). Note that as an additional information we obtained the
uniqueness of the extremal polynomial p. Although this direct QE-approach is theoretically simple,
from the computational point of view is not efficient. A more promising approach (because of the
less variables involved in the QE problem) is to get the the extremal polynomial in two steps. This
is due to C. Brown, see [2], [13]. First the minimum of the square of the norm m is computed, and
substituting back the computed optimal value, we get the optimal coefficient in a second step:

[In1 :]

Resolve[Exists[{a0, a1},
ForAll[x,−1 ≤ x ≤ 1, (x2 + a1x+ a0)2 ≤ m]],Reals]

[Out1 :]

m ≥ 1/4,

[In2 :]

Resolve[ForAll[x,−1 ≤ x ≤ 1,

(x2 + a1x+ a0)2 ≤ 1/4], {a0, a1},Reals]

[Out2 :]

a0 == −1/2 ∧ a1 == 0. (20)

This QE-approach will be used also in the remaining problems, that is in Subsection 2.2 and Section
3. In a similar way we can get for the cubic problem

p∗3(x) = x3 − 3/4x, (21)

and finally it is observed that the extremal polynomials p∗j ’s which solve the extremal Problem 3, in
principle are same polynomials as the Tj’s and Oj’s, which were considered in Problem 1 and Problem
2. So the extremal problem in this subsection is also a possible, although challenging approach for
the introduction of classical Chebyshev polynomials.

Finally we notice that without the built-in optimization or quantifier elimination methods, an
elementary calculus approach can be also used for finding p∗2. For each ordered pair (a0, a1), the
biggest deviation in I is shown in the next picture. To the red point with coordinates (−1/2, 0)
belongs the smallest function value for G.
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Figure 4: Contour lines of G(a0, a1) = supx∈I |x2 + a1x+ a0|

2.2 Approach 4: Another extremal problem: a point-value Chebyshev prob-
lem

Problem 4 Find a polynomial among the polynomials of degree at most n with real coefficients and
with ||p||∞ ≤ 1 for which the value |p(x)| is maximal for a fixed point x outside the unit interval, i.e,
x ∈ R\[−1, 1].

We provide a solution to this problem with QE for n = 2. We identify the polynomial p = a0 +
a1x + a2x

2 of degree at most two by the ordered triplet (a0, a1, a2). The variable B2 will contain
a description of a subset S of the 3D (a0, a1, a2)-space: The points in this set correspond to the
polynomials of degree at most two with sup norm bounded by one. The formula describing S can be
obtained via QE:

B2 = Resolve[ForAll[x,−1 ≤ x ≤ 1,−1 ≤ a0+ a1x+ a2x2 ≤ 1],Reals]. (22)

Finally among the polynomials described by B2 we are looking for those for which the value |p(x)|
(|x| > 1) is maximal. By the QE call

Resolve[Abs[x] > 1 ∧ Exists[{a0, a1, a2},B2 ∧Abs[a0+ a1x+ a2x2] == m],Reals],
(23)
we obtain the formula

(x < −1 ∧ 0 ≤ m ≤ −1+ 2x2) ∨ (x > 1 ∧ 0 ≤ m ≤ −1+ 2x2) (24)

which clearly indicates that for an arbitrary but fixed x with |x| > 1 the maximum is again described
by the polynomial 2x2 − 1 which is exactly T2 (see (1))! Thus for n = 2, our second extremal
problem is solved again by the classical Chebyshev polynomial T2 (up to sign). Similar investigations
for bigger n > 2 are led to Tn and left to the interested reader. We close this subsection by noting that
the result here can be also interpreted as follows: Tn is the fastest growing polynomial outside [−1, 1]
among all polynomials of degree n with ||p||∞ ≤ 1 (cf. [10, p. 386]).
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Figure 5: Contour lines of |p(x)| on the set S.

3 Generalization
For generalization, we focus only on the third approach2 in this section and consider variations of
Problem 3. All will define new extremal polynomials. In Problem 3 we can

• alter the interval I or replace the interval I by a more general set E on the real line. If we
treat the unit interval I as part of the complex plane C, then we can even investigate (complex)
extremal polynomials on squares, rectangles, circular arcs and sectors in the complex plane as
well, see [8], [7], [11], [12].

• alter the specification of the sought for extremal polynomial: if, in addition to the leading
coefficient we fix also the next coefficient of the polynomial, then we can introduce the class of
Zolotarev polynomials, see [9], [6].

• we can request additional constraints on the monic extremal polynomials pn: e.g., it should also
satisfy that pn(−1) = pn(1) = 0, see [9].

Here we consider only one particular complex Chebyshev example for deg = 2, E = Aπ/2 = {z :
|z| = 1∧| arg z| < π

2
}, that is, a monic quadratic extremal polynomial over the complexes on the unit

semicircle which is symmetric w.r.t. the real axis is sought [12]. Assume that the sought for extremal
polynomial has the form p2(z) = z2+a1z+a0, where a1 and a0 should be determined. It is clear that
because of the symmetry of the circular arc, all the coefficients of the extremal polynomial is real,
therefore we will formulate the optimization problem as a real quantifier elimination problem in two
different ways. The first expresses the square of the norm of the polynomial p2 in terms of the real
part <(z) = x. Thus we have

Resolve[Exists[{a0, a1},ForAll[x,0 ≤ x ≤ 1,

1− 2a0+ a02 + a12 + 2a1x+ 2a0a1x+ 4a0x2 ≤ m]],Reals] (25)

2In the literature generalized Chebyshev polynomials may also refer to Shabat polynomials, which own exactly two
different two (complex) critical values, but we do not consider them here.
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We get m ≥ 4(3− 2
√
2). We substitute inf of m back to get the extremal coefficients a0, a1:

RootReduce[Resolve[ForAll[x,0 ≤ x ≤ 1,

1− 2a0+ a02 + a12 + 2a1x+ 2a0a1x+ 4a0x2 ≤ 4(3− 2
√
2)],

Reals,Backsubstitution → True]] (26)

We obtain a1 =
√
2− 2 and a0 =

√
2− 1, thus the quadratic (monic) Chebyshev polynomial on this

unit-semicircle is
p∗2(z) = TAπ/2

2 = z2 + (
√
2− 2)z + (

√
2− 1). (27)

The second uses the fact that the map z : x → x−i
x+i

maps R\I to the complex semicircle Aπ/2.
Thus in terms of x we have the following extremal problem expressed as a QE problem.

Resolve[Exists[{a0, a1},ForAll[x,Abs[x] >= 1,

(1+ 2a0+ a02 − 2a1− 2a0a1+ a12 + 2x2 − 12a0x2+

2a02x2 + 2a12x2 + x4 + 2a0x4 + a02x4 + 2a1x4+

2a0a1x4 + a12x4)/(x2 + 1)2 ≤ m]],Reals] (28)

Again, we get m ≥ 4(3− 2
√
2) and consequently a1 =

√
2− 2 and a0 =

√
2− 1, as above.

Finally we note that the extremal polynomial can be also characterized by its roots in complex plane,
i.e.

p∗2(z) = (z − z1)(z − z1), (29)

where z1 = 1
2
(2 −

√
2 − i

√
8
√
2− 10) ≈ 0.2929 − 0.5731i. If we compute quadratic Chebyshev

polynomials not only for the semicircle Aπ/2, but for a unit circular arc which is symmetric w.r.t.
the real axis where the half-opening angle α of the arc Aα varies between 0 and π, and visualize the
root orbits of the infinitely many associated extremal polynomials on the complex plane, we get two
curves starting from 1 and ending up at 0. Thus the two extremal polynomials which belong to α = 0
and α = π (in fact already for any α which is between 2π

3
and π) are (z − 1)2 and z2, respectively.

Figure 6: Root orbits of quadratic Chebyshev polynomials on circular arcs
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4 Conclusion
We shed light to four exploration paths following different problems. In the classical case they all
lead to same polynomial family: to the classical Chebyshev polynomials Tn. We put an emphasis
on extremality. Chebyshev polynomials can be also introduced as a solution of a particular extremal
problem as we saw in Section 2.1 and 2.2. We demonstrated that computer algebra systems equipped
with symbolic algorithms may help to consider, to compute, and to introduce extremal polynomials
constructively. We solved some extremal problems via the built-in optimization tools of Mathemat-
ica (a black-box approach) and also with the real quantifier elimination algorithm (as a white-box
approach).
In this short paper we just touched the possible problems and the corresponding algorithms and tools
for the symbolic computer-aided treatment of the problems and do not investigated the limits of the
current implementations and possible numerical approaches and the connections between the com-
plex and real generalized extremal problems. As the degree of the sought for extremal polynomial
increases, some of the computational problems are unsolvable symbolically. Then we have to exploit
additional knowledge or the solution may be reconstructed from (a high enough precision) numerical
approximation of the extremal polynomial. Unfortunately for the generalized extremal problems, es-
pecially in the complex plane, a nice, complete closed-form or recursive solution is known (or can be
expected) only in a very few cases.
The author develops in the frame of a Hungarian-Serbian IPA project “Non-Standard Forms of Teach-
ing Mathematics and Physics: Experimental and Modeling Approach” a whole course material for the
(generalized) extremal polynomials introduced in Section 3 and does research on the symbolic com-
putation of extremal polynomials. A GeoGebra course material development along this line were also
produced with Zoltán Kovács, see for instance the interactive material on the GeoGebra Tube
http://www.geogebratube.org/student/mFK8kqDa5.

Figure 7: GeoGebra spreadsheet for quadratic Chebyshev polynomials on circular arcs
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